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Catalytic N-H addition to C-C multiple bonds is a highly
desirable, atom-economical transformation for the synthesis of
organonitrogen molecules.1,2 Organolanthanides3 are highly efficient
catalysts for the intramolecular hydroamination/cyclization of
aminoalkenes,4,5 aminoalkynes,6 and aminoallenes.7 Nevertheless,
efficient cyclization of amines tethered to 1,2-disubstituted alkenes
has remained elusive8 (presumably for steric reasons4e,f), severely
limiting implementation in stereoselective approaches5 to azacycles
bearing key substituents of naturally occurring alkaloids. However,
from preliminaryintermolecularorganolanthanide-mediated diene
hydroamination results,9a we envisioned conjugated diene sub-
strates10 as attractive presursors for the synthesis of such azacyclic
targets. Diene substrates are likely to be more reactive because the
conjugated vinyl substituent should stabilize/delocalize the charge
distribution in the insertive transition state (Scheme 1; thermo-
dynamic estimates as described previously.3d,4f,6,7). Moreover, the
steric demands of anη3-allyl3 intermediate may enhance ancillary
ligand stereodirecting effects for diastereo- and enantioselective
pathways to substituted pyrrolidines and piperidines. Herein we
report the organolanthanide-catalyzed hydroamination/cyclization
of conjugated aminodienes11 as examples of efficient hydroami-
nation/cyclization of amines tethered to 1,2-disubstituted alkenes
and initial observations on scope, selectivity, and mechanism.9b

Anaerobic cyclization of primary and secondary aminodienes
mediated by Cp′2LnCH(TMS)2 (Cp′ ) η5-Me5C5),12 CGCSmN-
(TMS)2 (CGC ) Me2Si(η5-Me4C5)(tBuN)),4c or (S)-Me2Si(OHF)-
(CpR*)SmN(TMS)2 (OHF) η5-octahydrofluorenyl; Cp) η5-C5H3;

R* ) (-)-menthyl)13 precatalysts is clean and general in scope
(Table 1).14 Thus, 2-substituted pyrrolidines (entries 1-5, 8-12)
and piperidines (entries 6, 7) are formed via 5-exo and 6-exo
cyclizations, respectively. Productsa/b are obtained as major
products (entries 1-8) for terminal dienes, however, productsc/d
predominate when 1,4-disubstituted substrates are employed (entries
9-12).15 High conversions and reasonably rapid turnover frequen-
cies are observed at 25 or 60°C. Note that the predicted rate
enhancement vs 4-pentenamine and 5-hexenamine is operative
despite increased substrate steric encumbrance.16 Furthermore,Nt

varies with terminal substituent in the order Me< H < Ph (Nt )
0.02, 0.79, 2.3 h-1, respectively; entries 10, 2, 12), in accord with
proposed transition state electronic demands (Scheme 1). Catalyst
structural effects similar to those in monosubstituted alkene
hydroamination are also operative.Nt increases with increasing
metal ionic radius4f,17 (La > Sm > Y; entries 1-3, entries 9-10,
entries 11-12) and approximately with more open ligation (OHF*,
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Scheme 1. Proposed Catalytic Cycle for
Organolanthanide-Mediated Hydroamination of Conjugated
Aminodienes

Table 1. Results for Organolanthanide-Catalyzed Hydroamination/
Cyclization of Conjugated Aminodienes

a Determined by1H NMR. b Isolated yield (entry 8) or that of Cbz
carbamate (entry 7).c Other Ri ) H. d Determined by1H NMR and/or GC-
MS of Boc derivatives.e Turnover frequencies measured in C6D6 with 3-11
mol % precatalyst.f OHF* ) (S)-Me2Si(η5-octahydrofluorenyl)(CpR*), R*
) (-)-menthyl.g Determined by the GC-MS ratio of corresponding
hydrogenated Boc derivatives.h Cis:trans) 178:1; alkene isomer ratio (a:
b:c) ) 94:1:5.
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CGC . Cp′2; entries 5, 4, and 2). Preliminary kinetic studies11

reveal linear dependence of reaction time on [substrate] up to∼75%
conversion, consistent with zero-order kinetic dependence on
[substrate] (turnover-limiting intramolecular alkene insertion).

Good to excellent diastereoselectivities are observed in formation
of a 2,5-trans-disubstituted pyrrolidine (entries 13,14) and a 2,6-
cis-disubstituted piperidine (entries 15, 16) from the corresponding
methyl-substituted dienes.18 Note that entry 15 demonstrates a
concise, efficient synthesis of (()-pinidine19 with excellent stereo-
controls for both 2,6-cis substitution (cis:trans) 178:1) andtrans-
alkene geometry (14a:b:c ) 94:1:5). The high selectivities can be
rationalized by assuming chairlike transition states in which methyl
and diene units occupy thermodynamically more stable equatorial
positions (Figure 1). Preliminary studies of enantioselective cy-

clizations reveal that3f 4a/b conversion catalyzed byC1-
symmetric (S)-Me2Si(OHF)(CpR*)SmN(TMS)2 proceeds with up
to 69% ee (Table 2, entries 2-4) while analogous1 f 2a/b
cyclization proceeds with 23% ee (Table 2, entry 1). In contrast,
previous intramolecular aminomonoalkene hydroamination/cycliza-
tions to such piperidines exhibit far lowerNt values and
enantioselectivities;5a the present results constitute the best com-
bination of reactivity and selectivity to date.

In conclusion, we have demonstrated that efficient organolan-
thanide-catalyzed intramolecular hydroamination/cyclization of
amines tethered to 1,2-disubstituted alkenes is achieved by using
readily accessible conjugated aminodienes. The results include rate
enhancements due to electronic effects as well as good regio- and
diastereoselectivity. That aminodienes offer general and efficient
substrates for enantioselective hydroamination/cyclization routes to
2-substituted azacycles motivates current work with other catalysts
and conjugated substrates, and application of this methodology to
alkaloid synthesis.
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Figure 1. Plausible transition state for diastereoselective aminodiene
hydroamination/cyclization.

Table 2. Enantioselective Cyclization of Aminodienesa

entry substrate product (ratio) solvent temp (°C) % eeb (config.)c

1 1 2a/b(93:7) C6D6 25 23
2 3 4a/b(97:3) C6D6 25 63 (R)
3 3 4a/b(96:4) C6D12 25 66 (R)
4 3 4a/b(95:5) C6D12 0 69 (R)

a Conditions: 7 mol % (entries 1, 2, 3) or 20 mol % (entry 4) of
(OHF*)SmN(TMS)2 catalyst,∼0.6 mL of solvent.b For the major isomer,
determined by chiral HPLC analysis. Measured ee values vary only weakly
with conversion.c Determined by optical rotation of the HCl salt of
hydrogenated product. See Supporting Information.
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